4.6 Article

Surface tailoring of biomedical polymers: An FTIR study

期刊

JOURNAL OF APPLIED POLYMER SCIENCE
卷 81, 期 9, 页码 2203-2209

出版社

WILEY
DOI: 10.1002/app.1657

关键词

surface modification; plasma; biostability; biocompatibility; vascular grafts

向作者/读者索取更多资源

A multistep, surface-tailoring process of polymeric materials was developed with two consecutive plasma treatments and followed by derivatization reactions. In the first step, tetrafluoroethylene was plasma-polymerized, generating a highly crosslinked perfluoric surface layer. The next step introduced amine groups into the plasma polymer through exposure of the surface to plasma of ammonia. The reactive amine moieties were then used as anchoring sites for further derivatization. Finally, poly(ethylene glycol) chains were grafted onto the surface via a hexamethylene diisocyanate spacer. This method, aimed at the chemical modification of polymers for biomedical applications, was first demonstrated with poly(ethylene terephthalate) (PET) as a substrate in a previously published study (Cohn, D.; Stern, T. Macromolecules 2000, 33, 137). The aim of this study was to demonstrate the applicability of the method described previously to different polymers: poly(lactic acid), poly(ethylene) (PE), polystyrene (PST), poly(methyl methacrylate), a polybutadiene-based polyurethane (PEUOXAB-20), and Lycra. Fourier transform infrared (FTIR) spectroscopy was used to characterize the surface-modified substrates and the various control treatments. The results obtained were consistent with the derivatization scheme and in full agreement with the FTIR and ESCA results previously obtained for PET. (C) 2001 John Wiley & Sons, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据