3.8 Article

Sequencing, phylogenetic and transcriptional analysis of the glyoxylate bypass operon (ace) in the halophilic archaeon Haloferax volcanii

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S0167-4781(01)00263-9

关键词

glyoxylate cycle; isocitrate lyase; malate synthase; transcriptional regulation; Haloferax; Archaea

向作者/读者索取更多资源

The glyoxylate cycle occurs in the three domains of living organisms: Eukarya, Bacteria and Archaea. We have isolated and sequenced the ace (acetate assimilation) gene operon, comprising the glyoxylate cycle key enzymes isocitrate lyase and malate synthase genes (icl or aceA and ins or aceB), from the halophilic archaeon Haloferax volcanii. This is the first time that these genes are sequenced in an organism from the domain Archaea. Phylogenetic analysis of the sequenced genes revealed that isocitrate lyase shows a significant identity with isocitrate lyases from Eukarya and Bacteria, but it is not more closely related to eukaryal or bacterial enzymes, and that malate synthase from H. volcanii has very little identity with any other known protein. This enzyme forms a new class of malate synthases. Transcriptional analysis indicated that both genes are cotranscribed in a single 2.7 kb mRNA molecule. The genes were transcribed only when acetate was the carbon source, indicating transcriptional regulation. Two sets of palindromic sequences were found in the promoter region, possibly involved in binding of transcriptional regulators (repressors and/or activators). (C) 2001 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据