4.8 Article

Ablation of XRCC2/3 transforms immunoglobulin V gene conversion into somatic hypermutation

期刊

NATURE
卷 412, 期 6850, 页码 921-926

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/35091100

关键词

-

向作者/读者索取更多资源

After gene rearrangement, immunoglobulin V genes are further diversified by either somatic hypermutation or gene conversion(1). Hypermutation (in man and mouse) occurs by the fixation of individual, non-templated nucleotide substitutions. Gene conversion (in chicken) is templated by a set of upstream V pseudogenes. Here we show that if the RAD51 paralogues(2) XRCC2, XRCC3 or RAD51B are ablated the pattern of diversification of the immunoglobulin V gene in the chicken DT40 B-cell lymphoma line(3) exhibits a marked shift from one of gene conversion to one of somatic hypermutation. Non-templated, single-nucleotide substitutions are incorporated at high frequency specifically into the V domain, largely at G/C and with a marked hotspot preference. These mutant DT40 cell lines provide a tractable model for the genetic dissection of immunoglobulin hypermutation and the results support the idea that gene conversion and somatic hypermutation constitute distinct pathways for processing a common lesion in the immunoglobulin V gene. The marked induction of somatic hypermutation that is achieved by ablating the RAD51 paralogues is probably a consequence of modifying the recombination-mediated repair of such initiating lesions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据