4.5 Article

Stochastic neural computation I: Computational elements

期刊

IEEE TRANSACTIONS ON COMPUTERS
卷 50, 期 9, 页码 891-905

出版社

IEEE COMPUTER SOC
DOI: 10.1109/12.954505

关键词

pulsed neural networks; stochastic arithmetic; computational elements

向作者/读者索取更多资源

This paper examines a number of stochastic computational elements employed in artificial neural networks, several of which are introduced for the first time, together with an analysis of their operation. We briefly include multiplication, squaring, addition, subtraction, and division circuits in both unipolar and bipolar formats, the principles of which are well-known, at least for unipolar signals. We have introduced several modifications to improve the speed of the division operation. The primary contribution of this paper, however, is in introducing several state machine-based computational elements for performing sigmoid nonlinearity mappings, linear gain, and exponentiation functions. We also describe an efficient method for the generation of, and conversion between, stochastic and deterministic binary signals. The validity of the present approach is demonstrated in a companion paper through a sample application, the recognition of noisy optical characters using soft competitive learning. Network generalization capabilities of the stochastic network maintain a squared error within 10 percent of that of a floating-point implementation for a wide range of noise levels. While the accuracy of stochastic computation may not compare favorably with more conventional binary radix-based computation, the low circuit area, power, and speed characteristics may, in certain situations, make them attractive for VLSI implementation of artificial neural networks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据