4.4 Article

G-protein- and cAMP-dependent L-channel gating modulation:: a manyfold system to control calcium entry in neurosecretory cells

期刊

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s004240100607

关键词

adrenal chromaffin cells; calcium channels; cAMP/PKA-mediated phosphorylation opioidergic/purinergic/adrenergic-receptors; PTX-sensitive G proteins; voltage-dependent facilitation

向作者/读者索取更多资源

Voltage-gated Ca2+ channels are crucial to the control of Ca2+ entry in neurosecretory cells. In the chromaffin cells of adrenal medulla, paracrinally or autocrinally released neurotransmitters induce profound changes in Ca2+ channel gating and Ca2+-dependent events controlling catecholamine secretion and cell activity. The generally held view of these processes is that neurotransmitter-induced modulation of the most widely expressed Ca2+ channels in these cells (N-, P/Q- and L-type) follows two distinct pathways: a direct membrane-delimited G(i/o)-protein-induced inhibition of N- and P/Q-type and a remote cAMP-mediated facilitation of L-channels. Both actions depend on voltage, although with remarkably different molecular and kinetic aspects. Recent findings, however, challenge this simple scheme and suggest that L-channels do not require strong pre-pulses to be recruited or facilitated. They are available during normal depolarizations and may be tonically inhibited by G(i/o) proteins activated by the released neurotransmitters. Like the N- and P/Q-channels, this autocrine modulation is localized to membrane microareas. Unlike N- and P/Q-channels, however, the inhibition of L-channels is largely independent of voltage and develops in parallel with cAMP-mediated potentiation of channel gating. As L-channels play a crucial role in the control of catecholamine release in chromaffin cells, the two opposite modulations mediated by G(i/o) proteins and cAMP may represent an effective way to broaden the dynamic range of Ca2+ signals controlling exocytosis. Here, we review the basic features of this novel L-type channel inhibition comparing it to the well-established forms of L-channel potentiation and voltage-dependent facilitation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据