4.1 Article

Tectonics and paleogeography along the Amazon river

期刊

JOURNAL OF SOUTH AMERICAN EARTH SCIENCES
卷 14, 期 4, 页码 335-347

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0895-9811(01)00025-6

关键词

Amazon; paleogeography; neotectonics; mesozoic; cenozoic; morphotectonics

向作者/读者索取更多资源

The main structural and geomorphological features along the Amazon River are closely associated with Mesozoic and Cenozoic tectonic events. The Mesozoic tectonic setting is characterised by the Amazonas and Marajo Basins, two distinct extensional segments. The Amazonas Basin is formed by NNE-SSW normal faults, which control the emplacement of dolerite dykes and deposition of the sedimentary pile. In the more intense tectonic phase (mid-Late Cretaceous), the depocentres were filled with fluvial sequences associated with axial drainage systems, which diverge from the Lower Tapajos Arch. During the next subsidence phase, probably in the Early Tertiary, and under low rate extension, much of the drainage systems reversed, directing the paleo-Amazon River to flow eastwards. The Marajo Basin encompasses NW-SE normal faults and NE-SW strike-slip faults, with the latter running almost parallel to the extensional axes. The normal faults controlled the deposition of thick rift and post-rift sequences and the emplacement of dolerite dykes. During the evolution of the basin, the shoulder (Gurupa Arch) became distinct, having been modelled by drainage systems strongly controlled by the trend of the strike-slip faults. The Arari Lineament, which marks the northwest boundary of the Marajo Basin, has been working as a linkage corridor between the paleo and modern Amazon River with the Atlantic Ocean. The neotectonic evolution since the Miocene comprises two sets of structural and geomorphological features. The older set (Miocene-Pliocene) encompasses two NE-trending transpressive domains and one NW-trending transtensive domain, which are linked to E-W and NE-SW right-lateral strike-slip systems. The transpressive domains display aligned hills controlled by reverse faults and folds. and are separated by large plains associated with pull-apart basins along clockwise strike-slip systems (e.g. Tupinambarana Lineament). Many changes were introduced in the landscape by the transpressive and transtensive structures, such as the blockage of major rivers, which evolved to river-lakes, transgression of the sea over a large area in the Marajo region, and uplift of long and narrow blocks that are oblique to the trend of the main channel. The younger set (Pliocene-Holocene) refers to two triple-arm systems of rift/rift/strike-slip and strike-slip/strike-slip/rift types, and two large transtensive segments, which have controlled the orientation of the modern drainage patterns. (C) 2001 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据