4.6 Review

Optogenetic insights into striatal function and behavior

期刊

BEHAVIOURAL BRAIN RESEARCH
卷 255, 期 -, 页码 44-54

出版社

ELSEVIER
DOI: 10.1016/j.bbr.2013.04.018

关键词

Optogenetics; Striatum; Motor Control; Reward; Medium spiny neurons; Tonically active cholinergic interneurons

向作者/读者索取更多资源

Recent breakthroughs in optogenetic technologies to alter neuronal firing and function with light, combined with cell type-specific transgenic animal lines, has led to important insights into the function of distinct neuronal cell subtypes and afferent connections in the heterogeneously complex striatum. A vital part of the basal ganglia, the striatum is heavily implicated in both motor control and motivation-based behavior; as well as in neurological disorders and psychiatric diseases including Parkinson's Disease, Huntington's Disease, drug addiction, depression, and schizophrenia. Researchers are able to manipulate firing and cell signaling with temporal precision using optogenetics in the two striatal medium spiny neuron (MSN) subpopulations, the striatal interneurons, and striatal afferents. These studies confirmed the classical hypothesis of movement control and reward seeking behavior through direct versus indirect pathway MSNs; illuminated a selective role for TANs in cocaine reward; dissected the roles of glutamatergic and dopaminergic inputs to striatum in reward; and highlighted a role for striatal signaling molecules including an adrenergic G-protein coupled receptor in reward and the rho-GTPase Rac1 in cocaine reward and cocaine induced structural plasticity. This review focuses on how the evolving optogenetic toolbox provides insight into the distinct behavioral roles of striatal cell subpopulations and striatal afferents, which has clinically relevant implications into neurological disorders and psychiatric disease. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据