4.7 Article

Tannin diagenesis in mangrove leaves from a tropical estuary:: A novel molecular approach

期刊

GEOCHIMICA ET COSMOCHIMICA ACTA
卷 65, 期 18, 页码 3109-3122

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0016-7037(01)00641-X

关键词

-

向作者/读者索取更多资源

Molecular-level condensed tannin analyses were conducted on a series of mangrove (Rhizophora mangle) leaves at various stages of decomposition in a tropical estuary. Total molecular tannin yields ranged from 0.5% ash-free dry weight (AFDW) in the most highly degraded black leaves (6-7 weeks in the water) up to >7% AFDW in fresh leaves (<1 week in the water). Total tannin exhibits an intermediate lability in these leaves relative to other measured biochemicals. Leaching is an important mechanism in tannin removal from leaves as indicated by the 30% loss of measurable tannin during a leaching experiment. Condensed tannin was >80% procyanidin (PC) with the remainder being prodelphinidin (PD). PD tannin, with its higher degree of hydroxylation, proved to be more labile than PC tannin. Average chain length of condensed tannin (degree of polymerization) exhibited an initial increase in response to leaching, but later decreased in the subsequent shift toward abiotic or microbially mediated chemical reactions. Several trends point toward a possible condensation reaction in which tannin plays a role in nitrogen immobilization. These include an apparent inverse correlation between molecular tannin and nitrogen, a positive correlation between molecular tannin and percent basic amino acids, (13)C-NMR data indicating transformation of tannin as opposed to remineralization, and (13)C-NMR data showing loss of condensed tannin B-ring phenolic carbons coupled with preservation of A-ring phenolic carbon. In addition to condensed tannin, the molecular method used also yielded several triterpenoids. Triterpenoids accounted for up to 3.5% AFDW of the leaf material and exhibited a threefold increase between yellow senescent leaves entering the estuary and black leaves. This trend is likely due to the weakening of protective cuticular membranes during leaf decomposition, which leads to increased yields in the acidic conditions used for tannin analyses. Copyright (C) 2001 Elsevier Science Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据