4.6 Article

The biomechanics of locomotor compensation after peripheral nerve lesion in the rat

期刊

BEHAVIOURAL BRAIN RESEARCH
卷 229, 期 2, 页码 391-400

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbr.2012.01.040

关键词

Kinetic; Kinematic; Joint; Gait; Injury; Recovery

资金

  1. Natural Sciences and Engineering Research Council (NSERC) of Canada
  2. NSERC

向作者/读者索取更多资源

Functional recovery in animal models of nervous system disorders commonly involves behavioural compensation, in which animals alter the use of their limbs after injury, making it difficult to distinguish 'true' recovery from substitution of novel movements. The purpose of this study is to investigate how abnormal movements are produced by using biomechanical assessment of limb joint motion, an approach commonly used to diagnose human pathological gait. Rats were trained to cross a runway whilst kinetic (ground reaction forces) and kinematic (limb segment positions) data were synchronously recorded. Inverse dynamic analysis was used to calculate limb joint moments, or torques, and joint mechanical power throughout the stride for major joints of the forelimbs and hindlimbs, both before and after denervation of a major ankle extensor muscle. Before surgery, rats moved with joint moment and power profiles comparable to other quadrupeds, with differences attributable to species variation in limb posture. After surgery, rats trotted asymmetrically, with a near plantigrade stance of the left hindlimb. Surprisingly, ankle joint moments and power were largely preserved, with dramatic reductions in range of motion and joint moments at the proximal joints of the affected limb. Stiffening of the proximal limb compensated for increased compliance at the ankle but decreased the total mechanical work done by the injured limb. In turn, more work was done by the opposite, i.e. uninjured, hindlimb. This is the first study to quantify the biomechanical adjustments made within and between limbs in laboratory rodents after nervous system injury. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据