4.4 Article

Metabolic rates of epipelagic marine copepods as a function of body mass and temperature

期刊

MARINE BIOLOGY
卷 139, 期 3, 页码 587-596

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s002270100608

关键词

-

向作者/读者索取更多资源

Metabolic rates (oxygen consumption, ammonia excretion, phosphate excretion) have been calculated as a function of body mass (dry, carbon, nitrogen and phosphorus weights) and habitat temperature, using multiple regression. The metabolic data used for this analysis were species structured, collected from Arctic to Antarctic seas (temperature range: -1.7 degreesC to 29.0 degreesC). The data were further divided into geographical and/or seasonal groups (35 species and 43 data sets for oxygen consumption; 38 species and 58 data sets for ammonia excretion; 22 species and 31 data sets for phosphate excretion). The results revealed that the variance attributed to body mass and temperature was highest (93-96%) for oxygen consumption rates, followed by ammonia excretion rates (74-80%) and phosphate excretion rates (46-56%). Among the various body mass units, the best correlation was provided by the nitrogen unit, followed by the dry weight unit. The calculated Q(10) values varied slightly according to the choice of body mass units; overall ranges were 1.8-2.1 for oxygen consumption rates, 1.8-2.0 for ammonia excretion rates and 1.6-1.9 for phosphate excretion rates. The effects of body mass and temperature on the metabolic quotients (O:N, N:P, O:P) were insignificant in most cases. Although the copepod metabolic data used in the present analysis were for adult and pre-adult stages, possible applications of the resultant regression equations to predict the metabolic rates of naupliar and early copepodite stages are discussed. Finally, global patterns of net growth efficiency [growth (growth + metabolism)(-1)] of copepods were deduced by combining the present metabolic equation with Hirst and Lampitt's global growth equation for epipelagic marine copepods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据