4.4 Article

Algorithms for hybrid MILP/CP models for a class of optimization problems

期刊

INFORMS JOURNAL ON COMPUTING
卷 13, 期 4, 页码 258-276

出版社

INFORMS
DOI: 10.1287/ijoc.13.4.258.9733

关键词

integer programming; benders-decomposition; constraint programming; MILP/CP hybrid algorithms; parallel machine scheduling

向作者/读者索取更多资源

The goal of this paper is to develop models and methods that use complementary strengths of Mixed Integer Linear Programming (MILP) and Constraint Programming (CP) techniques to solve problems that are otherwise intractable if solved using either of the two methods. The class of problems considered in this paper have the characteristic that only a subset of the binary variables have non-zero objective function coefficients if modeled as an MILP. This class of problems is formulated as a hybrid MILP/CP model that involves some of the MILP constraints, a reduced set of the CP constraints, and equivalence relations between the MILP and the CP variables. An MILP/CP based decomposition method and an LP/CP-based branch-and-bound algorithm are proposed to solve these hybrid models. Both these algorithms rely on the same relaxed MILP and feasibility CP problems. An application example is considered in which the least-cost schedule has to be derived for processing a set of orders with release and due dates using a set of dissimilar parallel machines. It is shown that this problem can be modeled as an MILP, a CP a combined MILP-CP OPL model (Van Hentenryck 1999), and a hybrid MILP/CP model. The computational performance of these models for several sets shows that the hybrid MILP/CP model can achieve two to three orders of magnitude reduction in CPU time.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据