4.4 Article

Localization of TREK-2 K+ channel domains that regulate channel kinetics and sensitivity to pressure, fatty acids and pHi

期刊

出版社

SPRINGER-VERLAG
DOI: 10.1007/s004240100626

关键词

arachidonic acid; free fatty acids; mechanosensitivity; pH; potassium channel; pressure

向作者/读者索取更多资源

TREK-2. a member of the tandem-pore K+ channel family, is activated by membrane stretch, unsaturated free fatty acids and acidic conditions, and exhibits unique open channel kinetics. To identify the regions responsible for these properties, we studied the role of the cytoplasmic regions of TREK-2. Deletion of the N-terminus had no effect on any aspect of TREK-2 function. Deletion of the C-terminus or its substitution with that of TASK-3 abolished the sensitivity to free fatty acids and intracellular pH (pH(i)), and reduced the sensitivity to pressure. The regions that allow activation by free fatty acids and low pH(i) were localized to 25- and 10-amino-acid domains, respectively, close to the fourth transmembrane segment. Substitution of KKTKEE, a charged region near the proximal C-terminus, with uncharged amino acids produced little change in TREK-2 function: however, its deletion abolished sensitivity to fatty acids and low pH, indicating that this region is structurally very important. The TREK-2 C-terminus was also found to be critical for its channel opening in bursts as well as for its increased basal activity. Thus. the C-terminus endows TREK-2 with unique channel kinetics and the ability to be gated by free fatty acids and low pH(i), and with increased mechanosensitivity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据