4.6 Article

A novel high-throughput imaging system for automated analyses of avoidance behavior in zebrafish larvae

期刊

BEHAVIOURAL BRAIN RESEARCH
卷 223, 期 1, 页码 135-144

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbr.2011.04.033

关键词

Zebrafish; Behavior; Visual stimuli; Avoidance; Thigmotaxis; High-throughput imaging; Automated image analysis

资金

  1. Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) [R01HD060647]
  2. National Institute of Environmental Health Sciences (NIEHS) [R03ES017755]

向作者/读者索取更多资源

Early brain development can be influenced by numerous genetic and environmental factors, with long-lasting effects on brain function and behavior. The identification of these factors is facilitated by recent innovations in high-throughput screening. However, large-scale screening in whole organisms remains challenging, in particular when studying changes in brain function or behavior in vertebrate model systems. In this study, we present a novel imaging system for high-throughput analyses of behavior in zebrafish larvae. The three-camera system can image 12 multiwell plates simultaneously and is unique in its ability to provide local visual stimuli in the wells of a multiwell plate. The acquired images are converted into a series of coordinates, which characterize the location and orientation of the larvae. The developed imaging techniques were tested by measuring avoidance behaviors in seven-day-old zebrafish larvae. The system effectively quantified larval avoidance and revealed an increased edge preference in response to a blue or red 'bouncing ball' stimulus. Larvae also avoid a bouncing ball stimulus when it is counter-balanced with a stationary ball, but do not avoid blinking balls counter-balanced with a stationary ball. These results indicate that the seven-day-old larvae respond specifically to movement, rather than color, size, or local changes in light intensity. The imaging system and assays for measuring avoidance behavior may be used to screen for genetic and environmental factors that cause developmental brain disorders and for novel drugs that could prevent or treat these disorders. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据