4.6 Article

Postprandial dyslipidemia in men with visceral obesity: an effect of reduced LDL receptor expression?

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpendo.2001.281.3.E626

关键词

postprandial lipemia; insulin resistance

向作者/读者索取更多资源

Postprandial lipemia after an oral fat challenge was studied in middle-aged men with visceral obesity. The two groups had similar plasma cholesterol levels, but obese subjects had higher levels of plasma triglyceride and reduced amounts of high-density cholesterol. Fasting plasma insulin was fourfold greater in obese subjects because of concomitant insulin resistance, with a calculated HOMA score of 3.1 +/- 0.6 vs. 0.8 +/- 0.2, respectively. Plasma apolipoprotein B-48 (apoB(48)) and retinyl palmitate (RP) after an oral fat challenge were used to monitor chylomicron metabolism. Compared with lean subjects, the fasting concentration of apoB48 was more than twofold greater in obese individuals, suggestive of an accumulation of posthydrolyzed particles. After the oral lipid load, the incremental areas under the apoB(48) and RP curves (IAUC) were both significantly greater in obese subjects (apoB48: 97 +/- 17 vs. 44 +/- 12 mug.ml(-1).h; RP: 3,120 +/- 511 vs. 1,308 +/- 177 U.ml(-1).h, respectively). A delay in the conversion of chylomicrons to remnants probably contributed to postprandial dyslipidemia in viscerally obese subjects. The triglyceride IAUC was 68% greater in obese subjects (4.7 +/- 0.6 vs. 2.8 +/- 0.8 mM.h, P < 0.06). Moreover, peak postprandial triglyceride was delayed by 2 h in obese subjects. The reduction in triglyceride lipolysis in vivo did not appear to reflect changes in hydrolytic enzyme activities. Postheparin plasma lipase rates were found to be similar for lean and obese subjects. In this study, low-density lipoprotein (LDL) receptor expression on mononuclear cells was used as a surrogate marker of hepatic activity. We found that, in obese subjects, the binding of LDL was reduced by one-half compared with lean controls (70.9 +/- 15.07 vs. 38.9 +/- 4.6 ng LDL bound/mug cell protein, P = 0.02). Because the LDL receptor is involved in the removal of proatherogenic chylomicron remnants, we suggest that the hepatic clearance of these particles might be compromised in insulin-resistant obese subjects. Premature and accelerated atherogenesis in viscerally obese, insulin-resistant subjects may in part reflect delayed clearance of postprandial lipoprotein remnants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据