4.6 Article

Functional expression and stabilization of horseradish peroxidase by directed evolution in Saccharomyces cerevisiae

期刊

BIOTECHNOLOGY AND BIOENGINEERING
卷 76, 期 2, 页码 99-107

出版社

JOHN WILEY & SONS INC
DOI: 10.1002/bit.1149

关键词

stability; peroxide; Pichia pastoris

向作者/读者索取更多资源

Biotechnology applications of horseradish peroxidase (HRP) would benefit from access to tailor-made variants with greater specific activity, lower K-m for peroxide, and higher thermostability. Starting with a mutant that is functionally expressed in Saccharomyces cerevisiae, we used random mutagenesis, recombination, and screening to identify HRP-C mutants that are more active and stable to incubation in hydrogen peroxide at 50 degreesC. A single mutation (N175S) in the HRP active site was found to improve thermal stability. Introducing this mutation into an HRP variant evolved for higher activity yielded HRP 13A7-N175S, whose half-life at 60 degreesC and pH 7.0 is three times that of wild-type (recombinant) HRP and a commercially available HRP preparation from Sigma (St. Louis, MO). The variant is also more stable in the presence of H2O2, SDS, salts (NaCl and urea), and at different pH values. Furthermore, this variant is more active towards a variety of small organic substrates frequently used in diagnostic applications. Site-directed mutagenesis to replace each of the four methionine residues in HRP (M83, M181, M281, M284) with isoleucine revealed no mutation that significantly increased the enzyme's stability to hydrogen peroxide. (C) 2001 John Wiley & Sons, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据