4.4 Article

The PduL Phosphotransacylase Is Used To Recycle Coenzyme A within the Pdu Microcompartment

期刊

JOURNAL OF BACTERIOLOGY
卷 197, 期 14, 页码 2392-2399

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.00056-15

关键词

-

资金

  1. National Science Foundation [MCB0956451]
  2. National Institutes of Health [AI081146]

向作者/读者索取更多资源

In Salmonella enterica, 1,2-propanediol (1,2-PD) utilization (Pdu) is mediated by a bacterial microcompartment (MCP). The Pdu MCP consists of a multiprotein shell that encapsulates enzymes and cofactors for 1,2-PD catabolism, and its role is to sequester a reactive intermediate (propionaldehyde) to minimize cellular toxicity and DNA damage. For the Pdu MCP to function, the enzymes encapsulated within must be provided with a steady supply of substrates and cofactors. In the present study, Western blotting assays were used to demonstrate that the PduL phosphotransacylase is a component of the Pdu MCP. We also show that the N-terminal 20-residue-long peptide of PduL is necessary and sufficient for targeting PduL and enhanced green fluorescent protein (eGFP) to the lumen of the Pdu MCP. We present the results of genetic tests that indicate that PduL plays a role in the recycling of coenzyme A internally within the Pdu MCP. However, the results indicate that some coenzyme A recycling occurs externally to the Pdu MCP. Hence, our results support a model in which a steady supply of coenzyme A is provided to MCP lumen enzymes by internal recycling by PduL as well as by the movement of coenzyme A across the shell by an unknown mechanism. These studies expand our understanding of the Pdu MCP, which has been linked to enteric pathogenesis and which provides a possible basis for the development of intracellular bioreactors for use in biotechnology. IMPORTANCE Bacterial MCPs are widespread organelles that play important roles in pathogenesis and global carbon fixation. Here we show that the PduL phosphotransacylase is a component of the Pdu MCP. We also show that PduL plays a key role in cofactor homeostasis by recycling coenzyme A internally within the Pdu MCP. Further, we identify a potential N-terminal targeting sequence using a bioinformatic approach and show that this short sequence extension is necessary and sufficient for directing PduL as well as heterologous proteins to the lumen of the Pdu MCP. These findings expand our general understanding of bacterial MCP assembly and cofactor homeostasis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据