4.4 Article

A hybrid QM/MM method employing real space grids for QM water in the TIP4P water solvents

期刊

JOURNAL OF COMPUTATIONAL CHEMISTRY
卷 22, 期 12, 页码 1252-1261

出版社

WILEY
DOI: 10.1002/jcc.1082

关键词

hybrid quantum mechanical/molecular mechanical method; real-space grids; density functional theory; water solution; parallel computing

向作者/读者索取更多资源

A novel hybrid quantum mechanical (QM)/molecular mechanical (MM) approach that employs the real-space grids for the QM subsystem is proposed for investigating chemical reactions in an aqueous condensed phase. All of the Hamiltonian matrix elements including electric fields formed by the point charges on MM waters is represented in the real space. Details of the practical implementations are presented. The solute polarization, solvation. structure, and the solvation energy of a water are computed, and the results are compared with those obtained by experiments and other QM/MM approaches that used the LCAO basis. It is shown that the real-space grid QM/MM method is adequate and superior for the description of the polarization of QM water in a water solution as well as in the gas phase. Solvation. structures of classical water solvents are also properly reproduced by this method. Further, parallelization of the code is implemented on a distributed memory architecture, and it is demonstrated that the real-space grid approach is suitable for the high-performance parallel computing due to the localization of Hamiltonian operations in the real space. (C) 2001 John Wiley & Sons, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据