4.6 Article

Mechanical behavior and microstructure of a thermally stable bulk nanostructured Al alloy

出版社

MINERALS METALS MATERIALS SOC
DOI: 10.1007/s11661-001-0207-6

关键词

-

向作者/读者索取更多资源

A commercial aluminum alloy, 5083, was processed using a cryomilling synthesis approach to produce powders with a nanostructured grain size. The powders were subsequently degassed, hot isostatically pressed, and extruded. The grain size at each processing step was measured utilizing both X-ray diffraction and transmission electron microscopy (TEM). The mechanical properties of the n-5083 extruded material were determined utilizing ASTM E8-93, Standard Test Methods for Tension Testing of Metallic Materials. This processing technique was found to produce a thermally stable nanostructured aluminum alloy which maintained an average grain size of 30 to 35 nm through several processing steps up to 0.61 T-mp. The thermal stability was attributed to Zener pinning of the grain boundaries by AIN and Al2O3 particles and solute drag of numerous atomic species. The nanostructured 5083 was found to have a 30 pet increase in yield strength and ultimate strength over the strongest commercially available form of 5083, with no corresponding decrease in elongation. The enhanced ductility is attributed to the presence of a few large, single-crystal aluminum grains acting as crack-blunting objects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据