4.7 Article

Hybrid hydrogels cross-linked by genetically engineered coiled-coil block proteins

期刊

BIOMACROMOLECULES
卷 2, 期 3, 页码 912-920

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bm0155322

关键词

-

向作者/读者索取更多资源

Hybrid hydrogels of hydrophilic synthetic polymers cross-linked by protein modules undergo externally triggered volume transitions as a result of protein conformational changes. To investigate the influence of coiled-coil protein structure and stability on hydrogel volume transition, a series of block proteins containing interspersed naturally derived recombinant coiled-coils was synthesized. Proteins were characterized using circular dichroism, size exclusion chromatography, gel electrophoresis, and analytical ultracentrifugation. The block proteins formed self-associating oligomers and displayed thermal unfolding profiles indicative of a hierarchic higher-order structure. Hybrid hydrogels were assembled from an N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer and His-tagged block proteins through metal complexation. A temperature-induced decrease in hydrogel swelling was observed, and the onset temperature of the volume transition corresponded to the onset temperature of protein unfolding. We conclude that stimuli-responsive properties of hybrid hydrogels can be tailored by engineering the structure and properties of protein cross-links.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据