4.5 Article

Oxidative stress and reactive nitrogen species generation during renal ischemia

期刊

TOXICOLOGICAL SCIENCES
卷 63, 期 1, 页码 143-148

出版社

OXFORD UNIV PRESS
DOI: 10.1093/toxsci/63.1.143

关键词

3-nitrotyrosine; peroxynitrite; superoxide; 4-hydroxynonenal; renal ischemia; acute renal failure; glutathione

资金

  1. NIDDK NIH HHS [DK44716] Funding Source: Medline

向作者/读者索取更多资源

Previous evidence suggests that both oxygen radicals and nitric oxide (NO) are important mediators of injury during renal ischemia-reperfusion (I-R) injury. However, the generation of reactive nitrogen species (RNS) has not been evaluated in this model at early time points. The purpose of these studies was to examine the development of oxidant stress and the formation of RNS during I-R injury. Male Sprague-Dawley rats were anesthetized and subjected to 40 min of bilateral renal ischemia followed by 0, 3, or 6 h of reperfusion. Control animals received a sham operation. Plasma urea nitrogen and creatinine levels were monitored as markers of renal injury. Glutathione (GSH) oxidation and 4-hydroxynonenal (4-HNE)-protein adducts were used as markers of oxidant stress. 3-Nitrotyrosine (3-NT) was used as a biomarker of RNS formation. Significant increases in plasma creatinine concentrations and urea nitrogen levels were found following both 3 and 6 h of reperfusion. Increases in GSH oxidation, 4-HNE-protein adduct levels, and 3-NT levels were observed following 40 min of ischemia with no reperfusion. Since these results suggested RNS generation during the 40 min of ischemia, a time course of RNS generation following 0, 5, 10, 20, and 40 min of ischemia was evaluated. Significant increases in 3-NT generation was detected as early as 10 min of ischemia and rose to values nearly 10-fold higher than Control at 40 min of ischemia. No additional increase was observed following reperfusion. The data clearly demonstrate that oxidative stress and RNS generation occur in the kidney during ischemia.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据