4.7 Article

A computational study of the influence of thermal softening on ballistic penetration in metals

期刊

INTERNATIONAL JOURNAL OF IMPACT ENGINEERING
卷 25, 期 8, 页码 787-803

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0734-743X(01)00008-2

关键词

-

向作者/读者索取更多资源

A two-dimensional axisymmetric computational study of the penetration of a tungsten heavy alloy (WHA) rod into a 6061-T6 aluminum target has been performed using a Lagrangian formulation. Adaptive remeshing has been used to alleviate the problem of excessive distortion of elements which occurs during large deformation studies (such as ballistic penetration). Strain hardening, strain-rate hardening and thermal softening in both the penetrator and target materials are taken into full consideration. The computed depth of penetration (DOP), residual penetrator length and maximum crater diameter match very well the experimental results reported by Yadav and Ravichandran (Int. J. Impact Eng., Submitted for publication) for an impact velocity of 1100 m/s. Computer simulations reveal that in the absence of failure mechanisms (such as shear banding), introduction of thermal softening in the penetrator material decreases its depth of penetration in a metal target, when compared to a penetrator material which does not soften thermally. These results are in contrast to the recent work of Rosenberg and Dekel (Int. J. Impact Eng. 21 (1998) 283-296) and a plausible explanation for this discrepancy is presented. (C) 2001 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据