4.7 Article

Drosophila euchromatic LTR retrotransposons are much younger than the host species in which they reside

期刊

GENOME RESEARCH
卷 11, 期 9, 页码 1527-1540

出版社

COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT
DOI: 10.1101/gr.164201

关键词

-

向作者/读者索取更多资源

The recent release of the complete euchromatic genome sequence of Drosophila melanogaster offers a unique opportunity to explore the evolutionary history of transposable elements (TEs) within the genome of a higher eukaryote. In tills report, we describe the annotation and phylogenetic comparison of 178 full-length long terminal repeat (LTR) retrotransposons from the sequenced component of the D. melanogaster genome. We report the characterization of 17 LTR retrotransposon families described previously and five newly discovered element families. Phylogenetically, these families can be divided into three distinct lineages that consist of members from the canonical Copia and Gypsy groups as well as a newly discovered third group containing BEL, mazi, and roo elements. Each family consists of members with average pairwise identities greater than or equal to 99% at the nucleotide level, indicating they may be the products of recent transposition events. Consistent with the recent transposition hypothesis, we found that 70% (125/178) of the elements (across all families) have identical intra-element LTRs. Using the synonymous substitution rate that has been calculated previously for Drosophila (.016 substitutions per site per million years) and the intra-element LTR divergence calculated here, the average age of the remaining 30% (53/178) of the elements was found to be 137,000 +/- 89,000 yr. Collectively, these results indicate that many full-length LTR retrotransposons present in the D. melanogaster genome have transposed well after this species diverged from its closest relative Drosophila simulans, 2.3 +/- .3 million years ago.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据