4.6 Article

Processing of silicate dust grains in Herbig Ae/Be systems

期刊

ASTRONOMY & ASTROPHYSICS
卷 375, 期 3, 页码 950-962

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361:20010878

关键词

circumstellar matter; stars : formation; stars : pre-main-sequence

向作者/读者索取更多资源

We have analysed the 10 mum spectral region of a sample of Herbig Ae/Be (HAEBE) stars. The spectra are dominated by a broad emission feature caused by warm amorphous silicates, and by polycyclic aromatic hydrocarbons. In HD 163296 we find aliphatic carbonaceous dust, the first detection of this material in a HAEBE star. The silicate band shows a large variation in shape, due to variable contributions of three components: (i) a broad shoulder at 8.6 mum; (ii) a broad maximum at 9.8 mum; and (iii) a narrow feature with a broad underlying continuum at 11.3 mum. From detailed modeling these features can be identified with silica (SiO2), sub-micrometer sized amorphous olivine grains and micrometer sized amorphous olivine grains in combination with forsterite (Mg2SiO4), respectively. Typical mass fractions are 5 to 10 per cent of crystalline over amorphous olivine, and a few per cent of silica compared to the olivines. The detection of silica in emission implies that this material is heated by thermal contact with other solids that have a high absorptivity at optical to near-IR wavelengths. The observed change in peak position of the silicate band in HAEBE stars from 9.7 mum to 11.3 mum is dominated by an increase in average grain size, while changes in composition play only a minor r (o) over cap le. The HAEBE stars, beta Pic and the solar system comet Halley form a sequence of increasing crystallinity. We find that the abundance of SiO2 tends to increase with increasing crystallinity. This is consistent with the compositional changes expected from thermal annealing of amorphous grains in the inner regions of the disk. We confirm earlier studies that the timescale for crystallisation of silicates in disks is longer than that of coagulation. Our results indicate that the processes that governed grain processing in the proto-solar nebula, are also at work in HAEBE stars.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据