4.4 Article

Activity in rostral motor cortex in response to predictable force-pulse perturbations in a precision grip task

期刊

JOURNAL OF NEUROPHYSIOLOGY
卷 86, 期 3, 页码 1079-1085

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.2001.86.3.1079

关键词

-

向作者/读者索取更多资源

The purpose of this investigation was to characterize the discharge of neurons in the rostral area 4 motor cortex (MI) during performance of a precision grip task. Three monkeys were trained to grasp an object between the thumb and index finger and to lift and hold it stationary for 2-2.5 s within a narrow position window. The grip and load forces and the vertical displacement of the object were recorded on each trial. On some trials a downward force-pulse perturbation generating a shear force and slip on the skin was applied to the object after 1.5 s of static holding. In total, 72 neurons were recorded near the rostral limit of the hand area of the motor cortex, located close to the premotor areas. Of these, 30 neurons were examined for receptive fields, and all 30 were found to receive proprioceptive inputs from finger muscles. Intracortical micro stimulation applied to 38 recording sites evoked brief hand movements, most frequently involving the thumb and index finger with an average threshold of 12 muA. Slightly more than one-half of the neurons (38/72) demonstrated significant increases in firing rate that on average began 284 +/- 186 ms before grip onset. Of 54 neurons tested with predictable force-pulse perturbations, 29 (53.7%) responded with a reflexlike reaction at a mean latency of 54.2 +/- 16.8 ms. This latency was 16 ms longer than the mean latency of reflexlike activity evoked in neurons with proprioceptive receptive fields in the more caudal motor cortex. No neurons exhibited anticipatory activity that preceded the perturbation even when the perturbations were delivered randomly and signaled by a warning stimulus. The results indicate the presence of a strong proprioceptive input to the rostral motor cortex, but raise the possibility that the afferent pathway or intracortical processing may be different because of the slightly longer latency.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据