4.6 Article

Glucosylceramide synthases, a gene family responsible for the biosynthesis of glucosphingolipids in animals, plants, and fungi

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 276, 期 36, 页码 33621-33629

出版社

ELSEVIER
DOI: 10.1074/jbc.M104952200

关键词

-

向作者/读者索取更多资源

Glucosylceramides are membrane lipids in most eukaryotic organisms and in a few bacteria. The physiological functions of these glycolipids have only been documented in mammalian cells, whereas very little information is available of their roles in plants, fungi, and bacteria. In an attempt to establish appropriate experimental systems to study glucosylceramide functions in these organisms, we performed a systematic functional analysis of a glycosyltransferase gene family with members of animal, plant, fungal, and bacterial origin. Deletion of such putative glycosyltransferase genes in Candida albicans and Pichia pastoris resulted in the complete loss of glucosylceramides. When the corresponding knock-out strains were used as host cells for homologous or heterologous expression of candidate glycosyltransferase genes, five novel glucosylceramide synthase (UDP-glucose:ceramide glucosyltransferase) genes were identified from the plant Gossypium arboreum (cotton), the nematode Caenorhabditis elegans, and the fungi Magnaporthe grisea, Candida albicans, and P. pastoris. The glycosyltransferase gene expressions led to the biosynthesis of different molecular species of glucosylceramides that contained either C18 or very long chain fatty acids. The latter are usually channeled exclusively into inositol-containing sphingolipids known from Saccharomyces cerevisiae and other yeasts. Implications for the biosynthesis, transport, and function of sphingolipids will be discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据