4.8 Article

Protein delivery from materials formed by self-selective conjugate addition reactions

期刊

JOURNAL OF CONTROLLED RELEASE
卷 76, 期 1-2, 页码 11-25

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S0168-3659(01)00398-4

关键词

Michael-type addition; conjugate addition; poly(ethylene glycol); hydrogel; protein delivery

向作者/读者索取更多资源

A new chemical cross-linking scheme was utilized for the formation of degradable poly(ethylene glycol) hydrogels suitable for the delivery of protein drugs. An aqueous solution containing a PEG-multiacrylate and solid particles of albumin was mixed with an aqueous solution containing a PEG-dithiol, rapidly producing a cross-linked hydrogel through a Michael-type addition reaction. For some formulations, it was observed that about 65% of the incorporated protein was released with zero-order kinetics over a period of about 4 days. By changing the functionality of the cross-linker, the release of protein could even be delayed for about 4 days, followed by zero-order release. The mechanism for release appeared to be a combination of slow dissolution of protein in the presence of PEG and hindered diffusion of protein through the gel. The cross-linking of the gels was studied rheometrically, and the hydrolytic degradation of the gels was characterized by measuring the swelling of the gels. Biochemical analysis of the released proteins demonstrated that the polymers reacted with each other, but not with proteins. Utilizing the Flory-Rehner and Peppas-Merrill equations, a framework for modeling the protein release from the gels is described. (C) 2001 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据