4.6 Article

Time-resolved site-selective spectroscopy of poly(p-phenylene vinylene) -: art. no. 115206

期刊

PHYSICAL REVIEW B
卷 64, 期 11, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.64.115206

关键词

-

向作者/读者索取更多资源

We report the dynamics of emission from the conjugated polymer poly(p-phenylene vinylene) after ultrafast optical excitation with a range of photon energies. Subpicosecond temporal resolution of the emission allows us to distinguish between photoluminescence and intense resonant scattering that decays within a few pico-seconds but dominates the time-integrated spectra. As the excitation energy is decreased the redshift of the photoluminescence over time is reduced, indicating a decreasing mobility of the excitons. The ratio between the intensities of the two highest-energy peaks in the spectrum increases for lower excitation energies and with increasing times after excitation. We deduce that the configurational energy change between ground and excited electronic states increases for excitons located on chain segments with shorter conjugation lengths. A Stokes shift of 20 meV between the excitation energy and the highest peak in emission is observed even when predominantly immobile excitons are generated. We attribute this shift to the preferential excitation into the higher levels of low-energy vibrational modes of states with electronic energy such that they are not in resonance with the excitation. This is supported by calculations that reproduce the experimental results only if these low-energy modes are considered. We show that when the low-energy phonon modes are important. site-selective spectroscopy excites a distribution of states that is broader than the spectral width of the excitation source.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据