4.1 Review

Na+:HCO3- cotransporters (NBC):: Cloning and characterization

期刊

JOURNAL OF MEMBRANE BIOLOGY
卷 183, 期 2, 页码 71-84

出版社

SPRINGER
DOI: 10.1007/s00232-001-0055-8

关键词

Na+: HCO3- cotransporter; kidney pancreas; CFTR; acid-base regulation

资金

  1. NIDDK NIH HHS [R01 DK 52821, R01 DK 54430] Funding Source: Medline

向作者/读者索取更多资源

The sodium bicarbonate cotransporter (NBC I) is essential for bicarbonate transport across plasma membranes in epithelial and nonepithelial cells. The direction of the NaHCO3 movement in secretory epithelia is opposite to that in reabsorptive epithelia. In secretory epithelia (such as pancreatic duct cells) NBC is responsible for the transport of bicarbonate from blood to the cell for eventual secretion at the apical membrane. In reabsorptive epithelia (such as kidney proximal tubule cells) NBC is responsible for the reabsorption of bicarbonate from cell to the blood. In nonepithelial cells this transporter is mainly involved with cell pH regulation. Recent molecular cloning experiments have identified the existence of four NBC isoforms (NBC1, 2, 3 and 4) and two NBC-related proteins AE4 and NCBE (Anion Exchanger 4 and Na-dependent Chloride-Bicarbonate Exchanger). All but AE4 are presumed to mediate the cotransport of Na+ and HCO3- under normal conditions and may be functionally altered in certain pathologic states. NBC1 shows a limited tissue expression pattern, is electrogenic and plays an important role in bicarbonate reabsorption in kidney proximal tubule. In addition to the kidney, NBC1 is expressed in pancreatic duct cells, is activated by cystic fibrosis trans membrane conductance regulator (CFTR) and plays an important role in HCO3- secretion. NBC2 and NBC3 have a wider tissue distribution than NBC1, are electroneutral, and are involved with cell pH regulation. The characterization of NBC4 is incomplete. The NBC-related protein called NCBE mediates Na-dependent, Cl-/Bicarbonate Exchange. The purpose of this review is to summarize recent advances on the cloning of NBC isoforms and related proteins and their role and regulation in physiologic and pathologic states.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据