4.7 Article Proceedings Paper

Quinolone molecular structure-activity relationships: What we have learned about improving antimicrobial activity

期刊

CLINICAL INFECTIOUS DISEASES
卷 33, 期 -, 页码 S180-S186

出版社

OXFORD UNIV PRESS INC
DOI: 10.1086/321846

关键词

-

向作者/读者索取更多资源

Recently, understanding of how molecular modifications of the core quinolone structure affect(s) antimicrobial agent activity has progressed rapidly. Three positions (2, 3, and 4) cannot be changed without a significant loss of biological activity. Furthermore, it appears that a cyclopropyl group is optimal at position 1. Substituents at positions 5 and 8 affect planar configuration, and either a methyl or methoxy appear optimal at these sites. Hydrogen and amino groups have been investigated as useful substituents at position 6, replacing the fluorine of the fluoroquinolones. Interestingly, in vitro activity enhancement observed with alterations at positions 5 and 6 is not always accompanied by improved in vivo action. For all these modifications, the substituents at positions 7 and 8 are critical for potent antimicrobial activity. Optimizing overall molecular configuration enhances the number of intracellular targets for antimicrobial action (R-8) and impedes the efficiency of efflux proteins (R-7) that diminish intracellular penetration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据