4.8 Article

Ultrafast holographic nanopatterning of biocatalytically formed silica

期刊

NATURE
卷 413, 期 6853, 页码 291-293

出版社

MACMILLAN PUBLISHERS LTD
DOI: 10.1038/35095031

关键词

-

向作者/读者索取更多资源

Diatoms are of interest to the materials research community because of their ability to create highly complex and intricate silica structures under physiological conditions: what these single-cell organisms accomplish so elegantly in nature requires extreme laboratory conditions to duplicate(1,2) -this is true for even the simplest of structures. Following the identification of polycationic peptides from the diatom Cylindrotheca fusiformis, simple silica nanospheres can now be synthesized in vitro from silanes at nearly neutral pH and at ambient temperatures and pressures(3,4). Here we describe a method for creating a hybrid organic/inorganic ordered nanostructure of silica spheres through the incorporation of a polycationic peptide (derived from the C. fusiformis silaffin-1 protein) into a polymer hologram created by two-photon-induced photopolymerization. When these peptide nanopatterned holographic structures are exposed to a silicic acid, an ordered array of silica nanospheres is deposited onto the clear polymer substrate. These structures exhibit a nearly fifty-fold increase in diffraction efficiency over a comparable polymer hologram without silica. This approach, combining the ease of processability of an organic polymer with the improved mechanical and optical properties of an inorganic material, could be of practical use for the fabrication of photonic devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据