4.6 Article

Shedding of membrane type matrix metalloproteinase 5 by a furin-type convertase - A potential mechanism for down-regulation

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 276, 期 38, 页码 35953-35960

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M103680200

关键词

-

向作者/读者索取更多资源

The shedding of membrane-associated proteins has been recognized as a regulatory mechanism to either up-regulate or down-regulate cellular functions by releasing membrane-bound growth factors or removing ectodomains of adhesion molecules and receptors. We have reported previously that the ectoenzyme of membrane type matrix metalloproteinase 5 (MT5-MMP) is shed into extracellular milieu (Pei, D. (1999) J. BioL Chem. 274, 8925-8932). Here we present evidence that MT5-MMP is shed by a furin-type convertase activity in the trans-Golgi network. Among proteinase inhibitors screened, only decanoyl-Arg-Val-Lys-Arg-chloromethylketone, a known inhibitor for furin-type convertases, blocked the shedding of MT5-MMP in a dose-dependent manner. As expected, decanoyl-Arg-Val-Lys-Arg-chloromethylketone also prevented the activation of MT5-MMP, raising the possibility that the observed shedding could be autolytic. However, an active site mutant devoid of any catalytic activity, is also shed efficiently, thus ruling out the autolytic pathway. The shedding cleavage was subsequently mapped to the stem region immediately upstream of the transmembrane domain, where a cryptic furin recognition site, (RRKERR)-R-545, was recognized. Indeed, MT5-MMP and furin are co-localized in the trans-Golgi network and the shed species could be detected inside the cells. Furthermore, deletion mutations removing this cryptic site prevented MT5-MMP from shedding. The resulting mutants express a gain-of-function phenotype by mediating more robust activation of proMMP-2 than the wild type molecule. Thus, shedding provides a potential mechanism to regulate proteolytic activity of membrane-bound MMPs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据