4.6 Article

Plants synthesize ethanolamine by direct decarboxylation of serine using a pyridoxal phosphate enzyme

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 276, 期 38, 页码 35523-35529

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M106038200

关键词

-

向作者/读者索取更多资源

The established pathways from serine to ethanolamine are indirect and involve decarboxylation of phosphatidylserine. Here we show that plants can decarboxylate serine directly. Using a radioassay based on ethanolamine (Etn) formation, pyridoxal 5'-phosphate-dependent L-serine decarboxylase (SDC) activity was readily detected in soluble extracts from leaves of diverse species, including spinach, Arabidopsis, and rapeseed. A putative Arabidopsis SDC cDNA was identified by searching GenBank (TM) for sequences homologous to other amino acid decarboxylases and shown by expression in Escherichia coli to encode a soluble protein with SDC activity. This cDNA was further authenticated by complementing the Etn requirement of a yeast psd1 psd2 mutant. In a parallel approach, a cDNA was isolated from a rapeseed library by its ability to complement the Etn requirement of a yeast cho1 mutant and shown by expression in E. coli to specify SDC. The deduced Arabidopsis and rapeseed SDC polypeptides are 90% identical, lack obvious targeting signals, and belong to amino acid decarboxylase group II. Recombinant Arabidopsis SDC was shown to exist as a tetramer and to contain pyridoxal 5'-phosphate. It does not attack D-serine, L-phosphoserine, other L-amino acids, or phosphatidylserine and is not inhibited by Etn, choline, or their phosphoesters. As a soluble, pyridoxal 5-phosphate enzyme, SDC contrasts sharply with phosphatidylserine decarboxylases, which are membrane proteins that have a pyruvoyl cofactor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据