4.6 Article

Glucose activates protein kinase C-ζ/λ through proline-rich tyrosine kinase-2, extracellular signal-regulated kinase, and phospholipase D -: A novel mechanism for activating glucose transporter translocation

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 276, 期 38, 页码 35537-35545

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M106042200

关键词

-

资金

  1. NIDDK NIH HHS [R01 DK065969] Funding Source: Medline

向作者/读者索取更多资源

Insulin controls glucose uptake by translocating GLUT4 and other glucose transporters to the plasma membrane in muscle and adipose tissues by a mechanism that appears to require protein kinase C (PKC)-zeta/lambda operating downstream of phosphatidylinositol 3-kinase. In diabetes mellitus, insulin-stimulated glucose uptake is diminished, but with hyperglycemia, uptake is maintained but by uncertain mechanisms. Presently, we found that glucose acutely activated PKC-zeta/lambda in rat adipocytes and rat skeletal muscle preparations by a mechanism that was independent of phosphatidylinositol 3-kinase but, interestingly, dependent on the apparently sequential activation of the dantrolene-sensitive, nonreceptor proline-rich tyrosine kinase-2; components of the extracellular signal-regulated kinase (ERK) pathway, including, GRB2, SOS, RAS, RAN, MEK1 and ERK1/2; and, most interestingly, phospholipase D, thus yielding increases in phosphatidic acid, a known activator of PKC-zeta/lambda. This activation of PKC-zeta/lambda, moreover, appeared to be required for glucose-induced increases in GLUT4 translocation and glucose transport in adipocytes and muscle cells. Our findings suggest the operation of a novel pathway for activating PKC-zeta/lambda and glucose transport.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据