4.8 Article

Particle-hole symmetry in the antiferromagnetic state of the cuprates

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.201228498

关键词

-

向作者/读者索取更多资源

In the layered cuprate perovskites, the occurrence of high-temperature superconductivity seems deeply related to the unusual nature of the hole excitations. The limiting case of a very small number of holes diffusing in the antiferromagnetic (AF) background may provide important insights into this problem. We have investigated the transport properties in a series of crystals of YBa2Cu3Oy, and found that the temperature dependencies of the Hall coefficient RH and thermopower S change abruptly as soon as the AF phase boundary is crossed. In the AF state at low temperatures T, both R-H and S are unexpectedly suppressed to nearly zero over a broad interval of T. We argue that this suppression arises from near-exact symmetry in the particle-hole currents. From the trends in RH and S, we infer that the symmetry is increasingly robust as the hole density x becomes very small (x similar or equal to 0.01). We discuss implications for electronic properties both within the AF state and outside.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据