4.7 Article

Shear-induced particle diffusivities from numerical simulations

期刊

JOURNAL OF FLUID MECHANICS
卷 443, 期 -, 页码 101-128

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0022112001005122

关键词

-

向作者/读者索取更多资源

Using Stokesian dynamics simulations, we examine the flow of a monodisperse, neutrally buoyant, homogeneous suspension of non-Brownian solid spheres in simple shear, starting from a large number of independent hard-sphere distributions and ensemble averaging the results. We construct a novel method for computing the gradient diffusivity via simulations on a homogeneous suspension and, although our results are only approximate due to the small number of particles used in the simulations, we present here the first values of this important parameter, both along and normal to the plane of shear, to be obtained directly either experimentally or numerically. We show furthermore that, although the system of equations describing the particle motions is deterministic, the particle displacements in the two directions normal to the bulk flow have Gaussian distributions with zero mean and a variance which eventually grows linearly in time thereby establishing that the system of particles is diffusive. For particle concentrations up to 45%, we compute the corresponding tracer diffusivities both from the slope of the mean-square particle displacement and by integrating the corresponding velocity autocorrelations and find good agreement between the two sets of results.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据