4.6 Article

The mammalian target of rapamycin regulates C2C12 myogenesis via a kinase-independent mechanism

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 276, 期 39, 页码 36079-36082

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.C100406200

关键词

-

资金

  1. NIGMS NIH HHS [GM58064] Funding Source: Medline

向作者/读者索取更多资源

Rapamycin inhibits differentiation of mouse C2C12 myoblasts, a tissue culture model for skeletal muscle differentiation. The mechanism by which a rapamycin-sensitive signaling pathway regulates myogenesis is largely unknown. The mammalian target of rapamycin (mTOR) is a central regulator of cell growth and proliferation, but its role in myogenesis has not been examined directly. Here we report the investigation of the function of mTOR and its downstream effectors in muscle differentiation. Rapamycin exerts an inhibitory effect on C2C12 myogenesis at different stages, implying that a rapamycin-sensitive pathway may be required for multiple processes during muscle differentiation. The mTOR protein level increases 10-fold during differentiation, via a post-transcriptional mechanism. As the first direct demonstration of the essential role of mTOR in muscle differentiation, we show that a rapamycin-resistant mTOR, but not S6 kinase 1, can rescue rapamycin-inhibited myogenesis. Remarkably, the myogenic function of mTOR does not require its kinase activity. Two downstream effectors of the rapamycin-sensitive pathway, S6 kinase 1 and eIF4E-binding protein 1, undergo differential regulation during myogenesis, but neither protein is the relevant effector for the myogenic signaling of mTOR. Taken together, our observations suggest a novel mTOR signaling mechanism essential for skeletal muscle differentiation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据