4.7 Article

Collapse and rebound of a laser-induced cavitation bubble

期刊

PHYSICS OF FLUIDS
卷 13, 期 10, 页码 2805-2819

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1401810

关键词

-

向作者/读者索取更多资源

A strong laser pulse that is focused into a liquid produces a vapor cavity, which first expands and then collapses with subsequent rebounds. In this paper a mathematical model of the spherically symmetric motion of a laser-induced bubble is proposed. It describes gas and liquid dynamics including compressibility, heat, and mass transfer effects and nonequilibrium processes of evaporation and condensation on the bubble wall. It accounts also for the occurrence of supercritical conditions at collapse. Numerical investigations of the collapse and first rebound have been carried out for different bubble sizes. The results show a fairly good agreement with experimental measurements of the bubble radius evolution and the intensity of the outgoing shock wave emitted at collapse. Calculations with a small amount of noncondensable gas inside the bubble show its strong influence on the dynamics. (C) 2001 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据