4.8 Article

Pressure-driven laminar flow in tangential microchannels: an elastomeric microfluidic switch

期刊

ANALYTICAL CHEMISTRY
卷 73, 期 19, 页码 4682-4687

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac010374q

关键词

-

向作者/读者索取更多资源

This paper describes laminar fluid flow through a three-dimensional elastomeric microstructure formed by two microfluidic channels, fabricated in layers that contact one another face-to-face (typically at a 90 degrees angle), with the fluid flows in tangential contact. There are two ways to control fluid flow through these tangentially connected microchannels. First, the flow profiles through the crossings are sensitive to the aspect ratio of the channels; the flow can be controlled by applying external pressure and changing this aspect ratio. Second, the flow direction of an individual laminar stream in multiphase laminar flow depends on the lateral position of the stream within the channel; this position can be controlled by injecting additional streams of fluid into the channel. We describe two microfluidic switches based on these two ways for controlling fluid flow through tangential microchannels and present theoretical arguments that explain the observed dependence of the flow profiles on the aspect ratio of the channels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据