4.3 Article

Magnetic and metal-insulator transitions through bandwidth control in two-dimensional Hubbard models with nearest and next-nearest neighbor transfers

期刊

JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN
卷 70, 期 10, 页码 3052-3067

出版社

PHYSICAL SOC JAPAN
DOI: 10.1143/JPSJ.70.3052

关键词

quantum simulation; strongly correlated electron; Hubbard model; metal-insulator transition; magnetic transition; Mott transition; quantum phase transition; spin liquid; J(1)-J(2) model; geometrical frustration

向作者/读者索取更多资源

Numerical studies on Mott transitions caused by the control of the ratio between bandwidth and electron-electron interaction (U) are reported. By using the recently proposed path-integral renormalization group (PIRG) algorithm, physical properties near the transitions, in the ground state of two-dimensional half-filled models with the nearest and the next-nearest neighbor transfers (-t and t', respectively) are studied as a prototype of geometrically frustrated system. The nature of the bandwidth-control transitions shows sharp contrast with that of the filling-control transitions: First, the metal-insulator and magnetic transitions axe separated each other and the metal-insulator (MI) transition occurs at smaller U, although the both transition interactions U increase vith increasing t'. Both transitions do not contradict the first-order transitions for smaller t'/t while the MI transitions become continuous type accompanied by emergence of unusual metallic phase near the transition for large t'/t. A nonmagnetic insulator phase is stabilized between MI and AF transitions. The region of the nonmagnetic insulator becomes wider with increasing t'/t. The phase diagram naturally connects two qualitatively different limits, namely the Hartree Fock results at small t'/t and speculations in the strong coupling Heisenberg limit.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据