4.4 Article

Evidence for plateau potentials in tail motoneurons of awake chronic spinal rats with spasticity

期刊

JOURNAL OF NEUROPHYSIOLOGY
卷 86, 期 4, 页码 1972-1982

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.2001.86.4.1972

关键词

-

向作者/读者索取更多资源

Motor units of segmental tail muscles were recorded in awake rats following acute (1-2 days) and chronic (>30 days) sacral spinal cord transection to determine whether plateau potentials contributed to sustained motor-unit discharges after injury. This study was motivated by a companion in vitro study that indicated that after chronic spinal cord injury, the tail motoneurons of the sacrocaudal spinal cord exhibit persistent inward currents (I-PIC) that cause intrinsically sustained depolarizations (plateau potentials) and firing (self-sustained firing). Importantly, in this companion study, the plateaus were fully activated at recruitment and subsequently helped sustain the firing without causing abrupt nonlinearities in firing. That is, after recruitment and plateau activation, the firing rate was modulated relatively linearly with injected current and therefore provided a good approximation of the input to the motoneuron despite the plateau. Thus in the present study, pairs of motor units were recorded simultaneously from the same muscle, and the firing rate (F) of the lowest-threshold unit (control unit) was used as an estimate of the synaptic input to both units. We then examined whether firing of the higher-threshold unit (test unit) was intrinsically maintained by a plateau, by determining whether more synaptic input was required to recruit the test unit than to maintain its firing. The difference in the estimated synaptic input at recruitment and de-recruitment of the test unit (i.e., change in control unit rate, DeltaF) was taken as an estimate of the plateau current (I-PIC) that intrinsically sustained the firing. Slowly graded manual skin stimulation was used to recruit and then de-recruit the units. The test unit was recruited when the control unit rate was on average 17.8 and 18.9 Hz in acute and chronic spinal rats, respectively. In chronic spinal rats, the test unit was de-recruited when the control unit rate (re: estimated synaptic input) was significantly reduced, compared with at recruitment (DeltaF = -5.5 Hz), and thus a plateau participated in maintaining the firing. In the lowest-threshold motor units, even a brief stimulation triggered very long-lasting firing (seconds to hours; self-sustained firing). Higher-threshold units required continuous stimulation (or a spontaneous spasm) to cause firing, but again more synaptic input was needed to recruit the unit than to maintain its firing (i.e., plateau present). In contrast, in acute spinal rats, the stimulation did not usually trigger sustained motor-unit firing that could be attributed to plateaus because DeltaF was not significantly different from zero. These results indicate that plateaus play an important role in sustaining motor-unit firing in awake chronic spinal rats and thus contribute to the hyperreflexia and hypertonus associated with chronic injury.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据