4.5 Article

The role of perisynaptic glial sheaths in glutamate spillover and extracellular Ca2+ depletion

期刊

BIOPHYSICAL JOURNAL
卷 81, 期 4, 页码 1947-1959

出版社

CELL PRESS
DOI: 10.1016/S0006-3495(01)75846-8

关键词

-

向作者/读者索取更多资源

Recent findings suggest that rapid activation of extrasynaptic receptors and transient depletion of extracellular Ca2+ may represent an important component of glutamatergic synaptic transmission. These phenomena imply a previously unrecognized role for synaptic glial sheaths: to retard extracellular diffusion in the synaptic vicinity. The present study is an attempt to assess the extent and physiological implications of this retardation using a detailed compartmental model of the typical synaptic environment. The model allows reconstruction of a partial (asymmetric) glial sheath covered with transporter molecules, which gives a more realistic representation of the vicinity of central synapses. Simulations show to what extent, in conditions compatible with physiology, the occupancy of synaptic receptors and the depletion of Ca2+ in the cleft increase with increased glial coverage. The impact of glial sheaths on synaptic transmission is shown to become greater with smaller synapses and with slower kinetics of perisynaptic ion transients. At a calyceal synapse, a profound temporal filtering of fast Ca2+ influx is found, and similar phenomena are predicted to occur following simultaneous activation of multiple synapses in the neuropil. The results provide a quantitative guidance for interpretation of physiological experiments that address fast transients of neurotransmitters and small ions in the brain tissue.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据