4.7 Article Proceedings Paper

FEM analysis of erosive wear

期刊

WEAR
卷 250, 期 -, 页码 779-784

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/S0043-1648(01)00716-5

关键词

wear; erosion; erosion rate; FEM analysis; deformation; plastic strain

向作者/读者索取更多资源

Surface damage caused by the impact of dispersed particles in gas or Liquid flow is called erosion. Much attention has been paid to this phenomenon as one of the most serious problems to be solved, particularly concerning pipe-bends or valves in pneumatic conveying systems. But the phenomena of erosive wear are so complicated and vary depending on the factors of not only the kinds of material, hardness, shapes, sizes and mechanical properties of the particles, but also of blasting angles and velocity. For the purpose of this study, mild steel was prepared and erosion wear tests were carried out. Steel grits were impacted against target materials at different incident angles. The results showed that the wear losses varied markedly as a function of the impact angles, and that the maximum wear occurred at specific angles. Maximum wear occurred at 20-30 degrees for mild steel, and 60 degrees for ductile iron. This impact angle dependence of wear was simulated by Tabor's theory and FEM which could analyze the plastic deformation of alloy surface as a result of a single particle impact. In the case of both mild steel and ductile cast iron, it was found that the impact angles play a very important and valid role in the corrosion process. (C) 2001 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据