4.7 Article

The ciliary neurotrophic factor/leukemia inhibitory factor/gp130 receptor complex operates in the maintenance of mammalian forebrain neural stem cells

期刊

JOURNAL OF NEUROSCIENCE
卷 21, 期 19, 页码 7642-7653

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.21-19-07642.2001

关键词

neural stem cells; ciliary neurotrophic factor; leukemia inhibitory factor receptor-deficient mice; gp130; stem cell maintenance; astrocyte differentiation

向作者/读者索取更多资源

The cytokines that signal through the common receptor subunit gp130, including ciliary neurotrophic factor (CNTF), interleukin-6, leukemia inhibitory factor (LIF) and oncostatin M, have pleiotropic functions in CNS development. Given the restricted expression domain of the CNTF receptor alpha (CNTFR) in the developing forebrain germinal zone and adult forebrain periventricular area, we have examined the putative role of CNTFR/LIFR/gp130-mediated signaling in regulating forebrain neural stem cell fate in vivo and in vitro. Analysis of LIFR-deficient mice revealed that a decreased level of LIFR expression results in a reduction in the number of adult neural stem cells. In adult LIFR heterozygote (+/-) mice, the number of neural stem cells and their progeny in the forebrain subependyma and TH-immunoreactive neurons in the olfactory bulb were significantly reduced. Intraventricular infusion of CNTF into the adult mouse forebrain, in the absence or presence of epidermal growth factor (EGF), enhanced self-renewal of neural stem cells in vivo. Analyses of EGF-responsive neural stern cells proliferating in vitro found that CNTF inhibits lineage restriction of neural stem cells to glial progenitors, which in turn results in enhanced expansion of stem cell number. These results suggest that CNTFR/LIFR/gp130-mediated signaling supports the maintenance of forebrain neural stem cells, likely by suppressing restriction to a glial progenitor cell fate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据