4.6 Article

The energy harvesting eel: A small subsurface ocean/river power generator

期刊

IEEE JOURNAL OF OCEANIC ENGINEERING
卷 26, 期 4, 页码 539-547

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/48.972090

关键词

autonomous power systems; energy conversion; energy harvesting; piezoelectric films; resonant electronics; vortex shedding

向作者/读者索取更多资源

The Energy Harvesting Eel (Eel) is a new device that uses piezoelectric polymers to convert the mechanical flow energy, available in oceans and rivers, to electrical power. Eel generators make use of the regular trail of traveling vortices behind a bluff body to strain the piezoelectric elements; the resulting undulating motion resembles that of a natural eel swimming. Internal batteries are used to store the surplus energy generated by the Eel for later use by a small, unattended sensor or robot. Because of the properties of commercially available piezoelectric polymers, Eels will be relatively inexpensive and are easily scaleable in size and have the capacity to generate from milli-watts to many watts depending on system size and flow velocity of the local environment. A practical Eel structure has been developed that uses the commercially available piezoelectric polymer, PVDF. Future Eels may use more efficient electrostrictive polymer. Every aspect of the system from the interactions between the hydrodynamics of the water flow and structural elements of the Eel, through the mechanical energy input to the piezoelectric material, and finally the electric power output delivered through an optimized resonant circuit has been modeled and tested. The complete Eel system, complete with a generation and storage system, has been demonstrated in a wave tank. Future work on the Eel will focus on developing and then deploying a small, lightweight, one-watt power generation unit, initially in an estuary and then subsequently in the ocean. Such Eels will have the ability to recharge batteries or capacitors of a distributed robotic group, or remote sensor array, thus extending the mission life indefinitely in regions containing flowing water.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据