4.5 Article

Using restriction fragment length polymorphisms to assess temporal variation and estimate the number of ascospores that initiate epidemics in field populations of Mycosphaerella graminicola

期刊

PHYTOPATHOLOGY
卷 91, 期 10, 页码 1011-1017

出版社

AMER PHYTOPATHOLOGICAL SOC
DOI: 10.1094/PHYTO.2001.91.10.1011

关键词

gene flow; genetic drift; population stability; primary inoculum; reproductive mode

向作者/读者索取更多资源

Restriction fragment length polymorphisms (RFLPs) and DNA fingerprints were used to assess temporal variation and estimate the effective population size of the wheat pathogen Mycosphaerella graminicola over a 6-year period. In each year, the fungal population was founded by ascospores originating from outside the sampled fields. A total of 605 fungal isolates were included in this study. Our results indicate that the genetic structure of these M. graminicola populations were stable over the 6-year period. The common alleles at each RFLP locus were present at similar frequencies each year. More than 99% of gene diversity was distributed within populations sampled from the same year and less than 1% was attributed to differences among years. The lack of population differentiation among collections taken in different years indicated that the effective size of the source population was sufficiently large that genetic drift was insignificant in this location. It also suggests that the initial colonists from ascospore founder populations were a fair reflection of the source population. We estimate that the effective sizes of these field populations ranged from 3,400 to 700,000 individuals, depending on the size of the field sampled and assumptions about mutation rates. Estimates of the number of ascospores initiating epidemics of leaf blotch disease in each field plot and factors that contribute to the large effective population size of M. graminicola are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据