4.6 Article

TNF-alpha induced shedding of the endothelial glycocalyx is prevented by hydrocortisone and antithrombin

期刊

BASIC RESEARCH IN CARDIOLOGY
卷 104, 期 1, 页码 78-89

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00395-008-0749-5

关键词

TNF-alpha; glycocalyx; endothelium; hydrocortisone; antithrombin

资金

  1. Friedrich Baur Foundation, of the Ludwig-Maximilians University, Munich, Germany. [0027/2007]

向作者/读者索取更多资源

Healthy vascular endothelium is clothed by the endothelial glycocalyx. This structure plays a key role in the regulation of inflammation and vascular permeability and is known to be degraded by ischemic and inflammatory stress. Our aim was to show whether hydrocortisone and antithrombin stabilize the glycocalyx and, therefore, the vascular barrier, against damage induced by the inflammatory stimulus TNF-alpha, thus improving the cardio-vascular situation. Isolated guinea pig hearts were perfused with Krebs-Henseleit buffer for 20 min at constant flow (baseline perfusion pressure 70 cmH(2)O). Hydrocortisone in a stress dose (10 A mu g/ml) or antithrombin in a physiological dose (1 U/ml) were then applied for 15 min before infusion of TNF-alpha (4 ng/ml, 10 min). Coronary net fluid filtration was assessed directly by measuring transudate formation on the epicardial surface. Hearts were perfusion-fixed to visualize the glycocalyx. TNF-alpha induced severe degradation of the glycocalyx, increased coronary resistance, heightened vascular leak and permeability to hydroxyethyl starch and caused mast-cell degranulation. Hydrocortisone and antithrombin both reduced all of these effects. Electron microscopy revealed a mostly intact glycocalyx after treatment with either drug. Both hydrocortisone and antithrombin clearly preserve the endothelial glycocalyx in the face of inflammatory degradation initiated by TNF-alpha, however, with different mechanisms. This is an important new facet in the pathophysiology and therapy of sepsis, since preservation of the glycocalyx should help prevent vasoconstriction, tissue edema as well as leukocyte and platelet adhesion, thus mitigating inflammation and tissue hypoxia.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据