4.6 Article

Steroidogenic acute regulatory protein binds cholesterol and modulates mitochondrial membrane sterol domain dynamics

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 276, 期 40, 页码 36970-36982

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M101939200

关键词

-

资金

  1. NICHD NIH HHS [HD34449, HD06274] Funding Source: Medline
  2. NIGMS NIH HHS [GM31651] Funding Source: Medline

向作者/读者索取更多资源

The steroidogenic acute regulatory protein (StAR) mediates the rate-limiting step of steroidogenesis, delivery of cholesterol to the inner mitochondrial membrane. However, the mechanism whereby cholesterol translocation is accomplished has not been resolved. Recombinant StAR proteins lacking the first N-terminal 62 amino acids comprising the mitochondrial-targeting sequence were used to determine if StAR binds cholesterol and alters mitochondrial membrane cholesterol domains to enhance sterol transfer. First, a fluorescent NBD-cholesterol binding assay revealed 2 sterol binding sites (K-d values near 32 nM), whereas the inactive A218V N-62 StAR mutant had only a single binding site with 8-fold lower affinity. Second, NBD-cholesterol spectral shifts and fluorescence resonance energy transfer from StAR Trp residues to NBD-cholesterol showed (i) close molecular interaction between these molecules (R-2/3 = 33 Angstrom) and (ii) sensitized NBD-cholesterol emission from only one of the two sterol binding sites. Third, circular dichroism showed that cholesterol binding induced a change in StAR secondary structure. Fourth, a fluorescent sterol transfer assay that did not require separation of donor and acceptor mitochondrial membranes demonstrated that StAR enhanced mitochondrial sterol transfer as much as 100-fold and induced/increased the formation of rapidly transferable cholesterol domains in isolated mitochondrial membranes. SLAR was 67-fold more effective in transferring cholesterol from mitochondria of steroidogenic MA-10 cells than from human fibroblast mitochondria. In contrast, sterol carrier protein-2 (SCP-2) was only 2.2-fold more effective in mediating sterol transfer from steroidogenic cell mitochondria. Taken together these data showed that StAR is a cholesterol-binding protein, preferentially enhances sterol transfer from steroidogenic cell mitochondria, and interacts with mitochondrial membranes to alter their sterol domain structure and dynamics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据