4.5 Article

Alternative strategies to sustain N-fertility in acid and calcaric beech forests: Low microbial N-demand versus high biological activity

期刊

BASIC AND APPLIED ECOLOGY
卷 9, 期 4, 页码 410-421

出版社

ELSEVIER GMBH
DOI: 10.1016/j.baae.2007.05.004

关键词

carbon; microbial growth efficiency; Luxembourg; nitrogen; mineralization; nutrient availability; respiration

类别

向作者/读者索取更多资源

To challenge the conventional wisdom that rates of net N-mineralization increase with pH, we measured net N-mineralization, respiration and/or microbial C and N in four Luxembourg beech forests with similar litter input, but different soil types, using laboratory incubation experiments. Litter input and fungal/bacterial colony ratios were also measured. To test whether the results could be explained by existing theoretical models, equations of C and N dynamics were reformulated to allow estimation of microbial growth efficiency, gross C and N release and microbial uptake, based on measured values of net N-mineralization, respiration. and C:N ratios of substrate and microbes. Instead of an increase, net N-mineralization rates showed a significant sevenfold decrease from acid to calcaric soil in the organic layer, and a fourfold decrease in the mineral topsoil. At the same time, microbial N-demand increased with pH, as indicated by the significant decrease in net N-mineralization per unit microbe or unit C respired. These results could be explained by theoretical models. In organic layer and mineral topsoil, despite high gross N-release, net N-mineralization rates decreased with pH because of higher microbial immobilization. Increase in microbial N-demand was associated with a decrease in fungal/bacterial colony ratio: the more the bacteria, the higher the microbial N-demand. Acid and calcaric soils seem to have different strategies to sustain ecosystem N-fertility. In calcaric soil, N-availability to the vegetation seems-indeed supported by high biological activity and gross N-release, which is needed to compensate for the potentially high immobilization by bacteria. In acid soil, however, despite low gross N-release, N-availability to the vegetation may not be lower than in calcaric soil, due to high amounts of fungi and low microbial N-demand. (C) 2007 Gesellschaft fur Okologie. Published by Elsevier GmbH. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据