4.5 Article

Simulation of biomass and sugar accumulation in sugarcane using a process-based model

期刊

ECOLOGICAL MODELLING
卷 144, 期 2-3, 页码 181-211

出版社

ELSEVIER
DOI: 10.1016/S0304-3800(01)00372-6

关键词

carbon budget; crop simulation model; partitioning of assimilates; dry matter accumulation

类别

向作者/读者索取更多资源

A crop simulation model (QCANE) was developed to simulate growth and sugar accumulation in sugarcane. QCANE is based on crop growth and development processes including canopy development, photosynthesis, respiration, and the partitioning of carbohydrates to plant organs for growth and respiration as dictated by phenological development and changing environments. Seasonal temperature changes and shading in lower layers of the canopy are used to determine leaf senescence and canopy development. Photosynthesis is simulated by incorporating diurnal light variation and canopy light attenuation into the rectangular hyperbolic relationship between leaf-photosynthesis and light intensity. Simulation of respiration is related to temperature and biomass accumulation. Partitioning of carbohydrates into leaf, non-millable, top, cane and root components of the crop uses temperature related functions which differ for different stages of crop development. A smoothing spline technique was used to account for the autocorrelation over time of sequential observations used for validation of the model. Root mean squared error (RMSE) and 'performance efficiency' (PE) were used for assessing the model performance. Validation of the model against data from an independent experiment at Bundaberg (a sub-tropical environment) resulted in RMSE values of 0.64 m(2) m(-2), 231 g m(-2), 279 g m(-2) and 124 g m(-2), respectively for leaf area index (L), cane dry matter accumulation (W-c), sugar accumulation (S-c) and fabre accumulation (F-c). PE values indicated that model accounted for 86, 98, 91 and 95% of variance observed in L, W-c, S-c, and F-c, respectively. The validation was extended to a tropical environment for an experiment conducted at Ingham. The result was RMSE values of 1.15 m(2) m(-2), 722 g m(-2), and 254 g m(-2) and the simulation accounted for 48, 86 and 92% of variance observed in L, W-c, and S-c, respectively. The flexibility and capacity of model to be applied to the simulation of climate changes are discussed. (C) 2001 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据