4.6 Article

Quantifying the relationship between multiple immunological parameters and host resistance: Probing the limits of reductionism

期刊

JOURNAL OF IMMUNOLOGY
卷 167, 期 8, 页码 4543-4552

出版社

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.167.8.4543

关键词

-

向作者/读者索取更多资源

Although reductionist experimental designs are excellent for identifying cells, molecules, or functions involved in resistance to particular microbes or cancer cells, they do not provide an integrated, quantitative view of immune function. In the present study, mice were treated with either dexamethasone (DEX) or cyclosporin A (CyA), and immune function and host resistance were evaluated. Multivariate statistical methods were used to describe the relative importance of a broad range of immunological parameters for host resistance in mice treated with various dosages of DEX. Multiple regression and logistic regression analysis indicated that changes in 24 immunological parameters explained a substantial portion of the changes in resistance to B16F10 tumor cells or streptococcus group B. However, at least 40% of the change in host resistance remained unexplained. DEX at all dosages substantially suppressed numerous relevant immunological parameters, but significantly decreased resistance to Listeria monocytogenes only at the highest dosage. In contrast, CyA substantially decreased resistance to L monocytogenes at dosages that caused relatively minor suppression of just a few immunological parameters (unfortunately, CyA data and host resistance data for L. monocytogenes were not suitable for multivariate analysis). These results illustrate that mathematical models can be used to explain changes in host resistance on the basis of changes in immune parameters, and that moderate changes in relevant immunological parameters may not produce the types of changes in host resistance expected on the basis of results from reductionist experimental designs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据